STUDY MODULE DESCRIPTION FORM						
Name of the module/subject Modelling of mechanical systems		Code 010642221010640413				
Field of study	Profile of study (general academic, practical)	Year /Semester				
Mechanical Engineering	(brak)	1/2				
Elective path/specialty	Subject offered in:	Course (compulsory, elective) obligatory				
Mechatronics	Polish					
Cycle of study:	Form of study (full-time,part-time)					
Second-cycle studies	full-ti	me				
No. of hours		No. of credits				
Lecture: 1 Classes: 2 Laboratory: -	Project/seminars:	- 3				
Status of the course in the study program (Basic, major, other)	(university-wide, from another fie	eld)				
(brak)	(I	orak)				
Education areas and fields of science and art	ECTS distribution (numband %)					
technical sciences		3 100%				
Technical sciences		3 100%				
Responsible for subject / lecturer:	Responsible for subject	t / lecturer:				
prof. dr hab. inż. Janusz Mielniczuk email: janusz.mielniczuk@put.poznan.pl tel. 61 665 2335 Working Machines and Transportation	mgr inż. Dominik Wojtkowiak email: dominik.wojtkowiak@put.poznan.pl tel. 61 665 2053 Working Machines and Transportation					

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of mathematics, materials science, mechanics, basics of machine design, theory of machines and strength of materials acquired during the first degree studies.		
2	Skills	Basics of vector and tensor analysis, solve simple problems of strength, the ability to solve differential equations.		
3	Social competencies	Students are creative and consistent in the implementation of the tasks has autonomy to solve problems, acquire and improve their knowledge and skills.		

Assumptions and objectives of the course:

-Learning a new mathematical apparatus necessary in the process of modeling materials and machines (mechanisms), learn the basics of physical and mathematical modeling of construction materials, machinery and equipment, some physical processes.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has a basic knowledge of the mechanics of solids and discrete systems with many degrees of freedom [K2A_W02]
- 2. Mathematical modeling of physical and mechanical systems based on the principle of d [K2A_W02]

Skills:

- 1. He can use the assimilated knowledge of the mechanics of materials of construction for the simulation of mechanical systems, mechanisms and machines. [K2A_U05]
- 2. Is able to assess potential negative impacts for the natural environment and humans, originating from the designed machine or a vehicle from the selected equipment group.- [K2A_U14]

Social competencies:

- 1. Understands the need for lifelong learning; is able to inspire and organize the learning process of others. [K2A_K01]
- 2. Is aware of and understands the importance and impact of non-technical aspects of mechanical engineering activities and its impact on the environment, is aware of responsibility for decisions [K2A_K02]
- 3. Is aware of social role of mechanical engineer, understands the need for and is able to deliver opinions and knowledge in the field of machine design, particularly through the media [K2A_K06]

Assessment methods of study outcomes

Faculty of Machines and Transport

-Written test, written tests on exercises, passing thesis.

Course description

-Notes on modeling - a goal of modeling entities. The modeling process - stages of modeling scheme. Physical modelling - simplifying assumptions, the physical parameters, examples of physical models. Mathematical modelling - basics model, the size of tensor, coordinate systems, principles for the formulation of constitutive relationships, formulate and solve the equations of motion of mechanical systems. Mathematical models of construction materials - one-parameter models, complex models, some models nonclassical. Mechanical systems one and two-parameter - equations of motion, vibration, undamped and damped, resonance, self-excited oscillations, vibrations of beams and shafts. Mathematical models of selected processes - thermal systems, hydrodynamic systems. The parallels between the worlds of physical. Mathematical modelling of machines and devices? forward and reverse kinematics, dynamic stresses.

Basic bibliography:

- 1. Ostrowska-Maciejewska; Podstawy mechaniki ośrodków ciągłych, PWN, Warszawa 1982
- 2. W. Flügge; Tensor analysis and continuum mechanics, Springer-Verlag, Berlin 1972
- 3. R. H. Cannon jr.; Dynamika układów fizycznych, WNT, Warszawa 1973
- 4. Derski W., Ziemba S., Analiza modeli reologicznych, Wyd. PWN, Warszawa 1968.
- 5. Wrotny L.T., Zadania z kinematyki i dynamiki maszyn technologicznych i robotów przemysłowych, Wyd. PW, Warszawa 1998.

Additional bibliography:

- 1. Z. Parszewski; Drgania i dynamika maszyn, WNT, Warszawa 1982
- 2. R. Scanlan, R. Rosenbaum; Drgania i flatter samolotów, PWN, Warszawa 1964
- 3. W. Tarnowski; Modelowanie systemów, Wyd. Politechniki Koszalińskiej, Koszalin 2004
- 4. Czemplik A., Modele dynamiki układów fizycznych dla inżynierów

Result of average student's workload

Activity	Time (working hours)
1. Participation in the lecture	15
2. Consultations	2
3. Preparation for the test	4
4. Exam	2
5. Participation in exercises	30
6. Consultations	2
7. Preparation for the test	10
8. Test	2

Student's workload

Source of workload	hours	ECTS
Total workload	67	3
Contact hours	53	2
Practical activities	0	0